
Spatially Adaptive Computation Time for Residual Networks

Michael Figurnov1* Maxwell D. Collins2 Yukun Zhu2 Li Zhang2 Jonathan Huang2

Dmitry Vetrov1,3 Ruslan Salakhutdinov4

1National Research University Higher School of Economics 2Google Inc.
3Yandex 4Carnegie Mellon University

michael@figurnov.ru {maxwellcollins,yukun,zhl,jonathanhuang}@google.com
vetrovd@yandex.ru rsalakhu@cs.cmu.edu

Abstract

This paper proposes a deep learning architecture based
on Residual Network that dynamically adjusts the number
of executed layers for the regions of the image. This archi-
tecture is end-to-end trainable, deterministic and problem-
agnostic. It is therefore applicable without any modifications
to a wide range of computer vision problems such as image
classification, object detection and image segmentation. We
present experimental results showing that this model im-
proves the computational efficiency of Residual Networks on
the challenging ImageNet classification and COCO object
detection datasets. Additionally, we evaluate the computa-
tion time maps on the visual saliency dataset cat2000 and
find that they correlate surprisingly well with human eye
fixation positions.

1. Introduction
Deep convolutional networks gained a wide adoption in

the image classification problem [23, 38, 39] due to their

exceptional accuracy. In recent years deep convolutional

networks have become an integral part of state-of-the-art

systems for a diverse set of computer vision problems such

as object detection [34], image segmentation [32], image-

to-text [22, 42], visual question answering [11] and image

generation [9]. They have also been shown to be surprisingly

effective in non-vision domains, e.g. natural language pro-

cessing [44] and analyzing the board in the game of Go [37].

A major drawback of deep convolutional networks is

their huge computational cost. A natural way to tackle this

issue is by using attention to guide the computation, which

is similar to how biological vision systems operate [35].

Glimpse-based attention models [26, 33, 2, 20] assume that

the problem at hand can be solved by carefully processing

a small number of typically rectangular sub-regions of the

*This work was done while M. Figurnov was an intern at Google.

Figure 1: Left: object detections. Right: feature extractor SACT

ponder cost (computation time) map for a COCO validation image.

The proposed method learns to allocate more computation for the

object-like regions of the image.

image. This makes such models unsuitable for multi-output

problems (generating box proposals in object detection) and

per-pixel prediction problems (image segmentation, image

generation). Additionally, choosing the glimpse positions

requires designing a separate prediction network or a heuris-

tic procedure [1]. On the other hand, soft spatial attention

models [42, 36] do not allow to save computation since they

require evaluating the model at all spatial positions to choose

per-position attention weights.

We build upon the Adaptive Computation Time

(ACT) [12] mechanism which was recently proposed for

Recurrent Neural Networks (RNNs). We show that ACT can

be applied to dynamically choose the number of evaluated

layers in Residual Network [15, 16] (the similarity between

Residual Networks and RNNs was explored in [29, 13]).

Next, we propose Spatially Adaptive Computation Time

(SACT) which adapts the amount of computation between

spatial positions. While we use SACT mechanism for Resid-

ual Networks, it can potentially be used for convolutional

LSTM [41] models for video processing [28].

SACT is an end-to-end trainable architecture that incor-

porates attention into Residual Networks. It learns a deter-

ministic policy that stops computation in a spatial position

as soon as the features become “good enough”. Since SACT

maintains the alignment between the image and the feature

maps, it is well-suited for a wide range of computer vision

2017 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/17 $31.00 © 2017 IEEE

DOI 10.1109/CVPR.2017.194

1790

����������	
��

������� ������� �������

� ��	�������	��

�������

���������

��������� ����������� ��������� ���������� � �����

Figure 2: Residual Network (ResNet) with 101 convolutional layers.

Each residual unit contains three convolutional layers. We apply

Adaptive Computation Time to each block of ResNet to learn an

image-dependent policy of stopping the computation.

problems, including multi-output and per-pixel prediction

problems.

We evaluate the proposed models on the ImageNet classi-

fication problem [8] and find that SACT outperforms both

ACT and non-adaptive baselines. Then, we use SACT as

a feature extractor in the Faster R-CNN object detection

pipeline [34] and demonstrate results on the challenging

COCO dataset [31]. Example detections and a ponder cost

(computation time) map are presented in fig. 1. SACT

achieves significantly superior FLOPs-quality trade-off to

the non-adaptive ResNet model. Finally, we demonstrate

that the obtained computation time maps are well-correlated

with human eye fixations positions, suggesting that a rea-

sonable attention model arises in the model automatically

without any explicit supervision.

2. Method
We begin by outlining the recently proposed deep convo-

lutional model Residual Network (ResNet) [15, 16]. Then,

we present Adaptive Computation Time, a model which

adaptively chooses the number of residual units in ResNet.

Finally, we show how this idea can be applied at the spa-

tial position level to obtain Spatially Adaptive Computation

Time model.

2.1. Residual Network

We first describe the ResNet-101 ImageNet classifica-

tion architecture (fig. 2). It has been extended for object

detection [15, 7] and image segmentation [6] problems. The

models we propose are general and can be applied to any

ResNet architecture. The first two layers of ResNet-101 are

a convolution and a max-pooling layer which together have

a total stride of four. Then, a sequence of four blocks is

stacked together, each block consisting of multiple stacked

residual units. ResNet-101 contains four blocks with 3, 4,

23 and 3 units, respectively. A residual unit has a form

F (x) = x+ f(x), where the first term is called a shortcut

connection and the second term is a residual function. A

residual function consists of three convolutional layers: 1×1
layer that reduces the number of channels, 3×3 layer that has

equal number of input and output channels and 1× 1 layer

��

������	
�����
���

��

��
��

��

���

��
��

��

���

��
��

��

���

��
��

��

�����������	�������	��

���
��
�
���
�
�

�
���
��
�
���
�
�

�

�����������

Figure 3: Adaptive Computation Time (ACT) for one block of

residual units. The computation halts as soon as the cumulative

sum of the halting score reaches 1. The remainder is R = 1 −
h1 − h2 − h3 = 0.6, the number of evaluated units N = 4, and

the ponder cost is ρ = N + R = 4.6. See alg. 1. ACT provides

a deterministic and end-to-end learnable policy of choosing the

amount of computation.

that restores the number of channels. We use pre-activation
ResNet [16] in which each convolutional layer is preceded

by batch normalization [19] and ReLU non-linearity. The

first units in blocks 2-4 have a stride of 2 and increases the

number of output channels by a factor of 2. All other units

have equal input and output dimensions. This design choice

follows Very Deep Networks [38] and ensures that all units

in the network have an equal computational cost (except for

the first units of blocks 2-4 having a slightly higher cost).

Finally, the obtained feature map is passed through a

global average pooling layer [30] and a fully-connected layer

that outputs the logits of class probabilities. The global aver-

age pooling ensures that the network is fully convolutional
meaning that it can be applied to images of varying resolu-

tions without changing the network’s parameters.

2.2. Adaptive Computation Time

Let us first informally explain Adaptive Computation

Time (ACT) before describing it in more detail and provid-

ing an algorithm. We add a branch to the outputs of each

residual unit which predicts a halting score, a scalar value

in the range [0, 1]. The residual units and the halting scores

are evaluated sequentially, as shown in fig. 3. As soon as the

cumulative sum of the halting score reaches one, all follow-

ing residual units in this block will be skipped. We set the

halting distribution to be the evaluated halting scores with

the last value replaced by a remainder. This ensures that the

distribution over the values of the halting scores sums to one.

The output of the block is then re-defined as a weighted sum

of the outputs of residual units, where the weight of each

unit is given by the corresponding probability value. Finally,

a ponder cost is introduced that is the number of evaluated

residual units plus the remainder value. Minimizing the pon-

der cost increases the halting scores of the non-last residual

units making it more likely that the computation would stop

earlier. The ponder cost is then multiplied by a constant τ

1791

and added to the original loss function. ACT is applied to

each block of ResNet independently with the ponder costs

summed.

Formally, we consider a block of L residual units (bold-

face denotes tensors of shape Height ×Width × Channels):

x0 = input, (1)

xl = F l(xl−1) = xl−1 + f l(xl−1), l = 1 . . . L, (2)

output = xL. (3)

We introduce a halting score hl ∈ [0, 1] for each residual

unit. We define hL = 1 to enforce stopping after the last

unit.

hl = H l(xl), l = 1 . . . (L− 1), (4)

hL = 1. (5)

We choose the halting score function to be a simple linear

model on top of the pooled features:

hl = H l(xl) = σ(W l pool(xl) + bl), (6)

where pool is a global average pooling and σ(t) =
1

1+exp(−t) .

Next, we determine N , the number of residual units to

evaluate, as the index of the first unit where the cumulative

halting score exceeds 1− ε:

N = min
{
n ∈ {1 . . . L} :

n∑
l=1

hl ≥ 1− ε
}
, (7)

where ε is a small constant (e.g., 0.01) that ensures that N
can be equal to 1 (the computation stops after the first unit)

even though h1 is an output of a sigmoid function meaning

that h1 < 1.

Additionally, we define the remainder R:

R = 1−
N−1∑
l=1

hl. (8)

Due to the definition of N in eqn. (7), we have 0 ≤ R ≤ 1.

We next transform the halting scores into a halting distri-
bution, which is a discrete distribution over the residual units.

Its property is that all the units starting from (N +1)-st have

zero probability:

pl =

⎧⎪⎨⎪⎩
hl if l < N,

R if l = N,

0 if l > N.

(9)

The output of the block is now defined as the out-

puts of residual units weighted by the halting distribution.

Since representations of residual units are compatible with

Algorithm 1 Adaptive Computation Time for one block of residual

units. ACT does not require storing the intermediate residual units

outputs.

Input: 3D tensor input
Input: number of residual units in the block L
Input: 0 < ε < 1
Output: 3D tensor output
Output: ponder cost ρ

1: x = input
2: c = 0 � Cumulative halting score

3: R = 1 � Remainder value

4: output = 0 � Output of the block

5: ρ = 0
6: for l = 1 . . . L do
7: x = F l(x)
8: if l < L then h = Hl(x)
9: else h = 1

10: end if
11: c += h
12: ρ += 1
13: if c < 1− ε then
14: output += h · x
15: R −= h
16: else
17: output += R · x
18: ρ += R
19: break
20: end if
21: end for
22: return output, ρ

each other [18, 13], the weighted average also produces

a feature representation of the same type. The values of

xN+1, . . . ,xL have zero weight and therefore their evalua-

tion can be skipped:

output =
L∑

l=1

plxl =

N∑
l=1

plxl. (10)

Ideally, we would like to directly minimize the number

of evaluated units N . However, N is a piecewise constant

function of the halting scores that cannot be optimized with

gradient descent. Instead, we introduce the ponder cost ρ, an

almost everywhere differentiable upper bound on the number

of evaluated units N (recall that R ≥ 0):

ρ = N +R. (11)

When differentiating ρ, we ignore the gradient of N . Also,

note that R is not a continuous function of the halting

scores [25]. The discontinuities happen in the configurations

of halting scores where N changes value. Following [12],

we ignore these discontinuities and find that they do not

impede training. Algorithm 1 shows the description of ACT.

The partial derivative of the ponder cost w.r.t. a halting

1792

score hl is

∂ρ

∂hl
=

{
−1 if l < N,

0 if l ≥ N.
(12)

Therefore, minimizing the ponder cost increases

h1, . . . , hN−1, making the computation stop earlier.

This effect is balanced by the original loss function L which

also depends on the halting scores via the block output, eqn.

(10). Intuitively, the more residual units are used, the better

the output, so minimizing L usually increases the weight R
of the last used unit’s output xN , which in turn decreases

h1, . . . , hN−1.

ACT has several important advantages. First, it adds very

few parameters and computation to the base model. Second,

it allows to calculate the output of the block “on the fly”

without storing all the intermediate residual unit outputs and

halting scores in memory. For example, this would not be

possible if the halting distribution were a softmax of halting

scores, as done in soft attention [42]. Third, we can recover

a block with any constant number of units l ≤ L by setting

h1 = · · · = hl−1 = 0, hl = 1. Therefore, ACT is a strict

generalization of standard ResNet.

We apply ACT to each block independently and then

stack the obtained blocks as in the original ResNet. The

input of the next block becomes the weighted average of the

residual units from the previous block, eqn. (10). A similar

connectivity pattern has been explored in [17]. We add the

sum of the ponder costs ρk, k = 1 . . .K from the K blocks

to the original loss function L:

L′ = L+ τ

K∑
k=1

ρk. (13)

The resulting loss function L′ is differentiable and can be

optimized using conventional backpropagation. τ ≥ 0 is

a regularization coefficient which controls the trade-off be-

tween optimizing the original loss function and the ponder

cost.

2.3. Spatially Adaptive Computation Time

In this section, we present Spatially Adaptive Computa-

tion Time (SACT). We adjust the per-position amount of

computation by applying ACT to each spatial position of the

block, as shown in fig. 4. As we show in the experiments,

SACT can learn to focus the computation on the regions of

interest.

We define the active positions as the spatial locations

where the cumulative halting score is less than one. Because

an active position might have inactive neighbors, the values

for the the inactive positions need to be imputed to evaluate

the residual unit in the active positions. We simply copy

the previous value for the inactive spatial positions, which

is equivalent to setting the residual function f(x) value to

������	
�����
������

��������
��

�����������	�������	��

�� ��

����

��

��

�� ���

���
�����������

��� ���

��� ���

��� ���

�� �� ���

Figure 4: Spatially Adaptive Computation Time (SACT) for one

block of residual units. We apply ACT to each spatial position of

the block. As soon as position’s cumulative halting score reaches

1, we mark it as inactive. See alg. 2. SACT learns to choose the

appropriate amount of computation for each spatial position in the

block.

	��

������������

	��

������������

������
��������
���������
�����

Figure 5: Residual unit with active and inactive positions in SACT.

This transformation can be implemented efficiently using the perfo-

rated convolutional layer [10].

	����

��	�����	

� �

���

�!��"���������

�
�

��� ��

Figure 6: SACT halting scores. Halting scores are evaluated fully

convolutionally making SACT applicable to images of arbitrary

resolution. SACT becomes ACT if the 3× 3 conv weights are set

to zero.

zero, as displayed in fig. 5. The evaluation of a block can

be stopped completely as soon as all the positions become

inactive. Also, the ponder cost is averaged across the spatial

positions to make it comparable with the ACT ponder cost.

The full algorithm is described in alg. 2.

We define the halting scores for SACT as

H l(x) = σ(W̃ l ∗ x+W l pool(x) + bl), (14)

where ∗ denotes a 3 × 3 convolution with a single output

channel and pool is a global average-pooling (see fig. 6).

SACT is fully convolutional and can be applied to images of

any size.

Note that SACT is a more general model than ACT, and,

consequently, than standard ResNet. If we choose W̃ l = 0,

then the halting scores for all spatial positions coincide. In

this case the computation for all the positions halts simulta-

neously and we recover the ACT model.

SACT requires evaluation of the residual function f(x)
in just the active spatial positions. This can be performed

1793

Algorithm 2 Spatially Adaptive Computation Time for one block

of residual units

Input: 3D tensor input
Input: number of residual units in the block L
Input: 0 < ε < 1

� input and output have different shapes

Output: 3D tensor output of shape H ×W × C
Output: ponder cost ρ

1: x̂ = input
2: X = {1 . . . H} × {1 . . .W}
3: for all (i, j) ∈ X do
4: aij = true � Active flag

5: cij = 0 � Cumulative halting score

6: Rij = 1 � Remainder value

7: outputij = 0 � Output of the block

8: ρij = 0 � Per-position ponder cost

9: end for
10: for l = 1 . . . L do
11: if not aij ∀(i, j) ∈ X then break
12: end if
13: for all (i, j) ∈ X do
14: if aij then xij = F l(x̂)ij
15: else xij = x̂ij

16: end if
17: end for
18: for all (i, j) ∈ X do
19: if not aij then continue
20: end if
21: if l < L then hij = Hl(x)ij
22: else hij = 1
23: end if
24: cij += hij

25: ρij += 1
26: if cij < 1− ε then
27: outputij += hij · xij

28: Rij −= hij

29: else
30: outputij += Rij · xij

31: ρij += Rij

32: aij = false
33: end if
34: end for
35: x̂ = x
36: end for
37: ρ =

∑
(i,j)∈X ρij/(HW)

38: return output, ρ

efficiently using the perforated convolutional layer proposed

in [10] (with skipped values replaced by zeros instead of the

nearest neighbor’s values). Recall that the residual function

consists of a stack of 1× 1, 3× 3 and 1× 1 convolutional

layers. The first convolutional layer has to be evaluated in

the positions obtained by dilating the active positions set

with a 3× 3 kernel. The second and third layers need to be

evaluated just in the active positions.

An alternative approach to using the perforated convolu-

tional layer is to tile the halting scores map. Suppose that we

share the values of the halting scores hl within k × k tiles.

For example, we can perform pooling of hl with a kernel

size k×k and stride k and then upscale the results by a factor

of k. Then, all positions in a tile have the same active flag,

and we can apply the residual unit densely to just the active

tiles, reusing the commonly available convolution routines.

k should be sufficiently high to mitigate the overhead of the

additional kernel calls and the overlapping computations of

the first 1 × 1 convolution. Therefore, tiling is advisable

when the SACT is applied to high-resolution images.

3. Related work

The majority of the work on increasing the computa-

tional efficiency of deep convolutional networks focuses on

static techniques. These include decompositions of convolu-

tional kernels [21] and pruning of connections [14]. Many

of these techniques made their way into the design of the

standard deep architectures. For example, Inception [39] and

ResNet [15, 16] use factorized convolutional kernels.

Recently, several works have considered the problem

of varying the amount of computation in computer vision.

Cascaded classifiers [27, 43] are used in object detection

to quickly reject “easy” negative proposals. Dynamic Ca-

pacity Networks [1] use the same amount of computation

for all images and use image classification-specific heuris-

tic. PerforatedCNNs [10] vary the amount of computation

spatially but not between images. [3] proposes to tune the

amount of computation in a fully-connected network using a

REINFORCE-trained policy which makes the optimization

problem significantly more challenging.

BranchyNet [40] is the most similar approach to ours

although only applicable to classification problems. It adds

classification branches to the intermediate layers of the net-

work. As soon as the entropy of the intermediate classifi-

cations is below some threshold, the network’s evaluation

halts. Our preliminary experiments with a similar procedure

based on ACT (using ACT to choose the number of blocks

to evaluate) show that it is inferior to using less units per

block.

4. Experiments

We first apply ACT and SACT models to the image clas-

sification task for the ImageNet dataset [8]. We show that

SACT achieves a better FLOPs-accuracy trade-off than ACT

by directing computation to the regions of interest. Addition-

ally, SACT improves the accuracy on high-resolution images

compared to the ResNet model. Next, we use the obtained

SACT model as a feature extractor in the Faster R-CNN ob-

ject detection pipeline [34] on the COCO dataset [31]. Again

we show that we obtain significantly improved FLOPs-mAP

trade-off compared to basic ResNet models. Finally, we

demonstrate that SACT ponder cost maps correlate well with

1794

the position of human eye fixations by evaluating them as a

visual saliency model on the cat2000 dataset [4] without any

training on this dataset.

4.1. Image classification (ImageNet dataset)

First, we train the basic ResNet-50 and ResNet-101 mod-

els from scratch using asynchronous SGD with momentum

(see the supplementary text for the hyperparameters). Our

models achieve similar performance to the reference imple-

mentation1. For a single center 224× 224 resolution crop,

the reference ResNet-101 model achieves 76.4% accuracy,

92.9% recall@5, while our implementation achieves 76%

and 93.1%, respectively. Note that our model is the newer

pre-activation ResNet [16] and the reference implementation

is the post-activation ResNet [15].

We use ResNet-101 as the basic architecture for ACT and

SACT models. Thanks to the end-to-end differentiability and

deterministic behaviour, we find the same optimization hy-

perparameters are applicable for training of ACT and SACT

as for the ResNet models. However, special care needs to be

taken to address the dead residual unit problem in ACT and

SACT models. Since ACT and SACT are deterministic, the

last units in the blocks do not get enough training signal and

their parameters become obsolete. As a result, the ponder

cost saved by not using these units overwhelms the possible

initial gains in the original loss function and the units are

never used. We observe that while the dead residual units

can be recovered during training, this process is very slow.

Note that ACT-RNN [12] is not affected by this problem

since the parameters for all timesteps are shared.

We find two techniques helpful for alleviating the dead

residual unit problem. First, we initialize the bias of the

halting scores units to a negative value to force the model

to use the last units during the initial stages of learning.

We use bl = −3 in the experiments which corresponds

to initially using 1/σ(bl) ≈ 21 units. Second, we use a

two-stage training procedure by initializing the ACT/SACT

network’s weights from the pretrained ResNet-101 model.

The halting score weights are still initialized randomly. This

greatly simplifies learning of a reasonable halting policy in

the beginning of training.

As a baseline for ACT and SACT, we consider a non-

adaptive ResNet model with a similar number of floating

point operations. We take the average numbers of units used

in each block in the ACT or SACT model (for SACT we also

average over the spatial dimensions) and round them to the

nearest integers. Then, we train a ResNet model with such

number of units per block. We follow the two-stage training

procedure by initializing the network’s parameters with the

the first residual units of the full ResNet-101 in each block.

This slightly improves the performance compared to using

the random initialization.

1https://github.com/KaimingHe/deep-residual-networks

(a) Test resolution 224× 224 (b) Test resolution 352× 352

(c) Resolution vs. accuracy
(d) FLOPs vs. accuracy for varying

resolution

Figure 7: ImageNet validation set. Comparison of ResNet, ACT,

SACT and the respective baselines. Error bars denote one standard

deviation across images. All models are trained with 224 × 224
resolution images. SACT outperforms ACT and baselines when

applied to images whose resolutions are higher than the training

images. The advantage margin grows as resolution difference

increases.

Figure 8: Ponder cost maps for each block (SACT τ = 0.005,

ImageNet validation image). Note that the first block reacts to the

low-level features while the last two blocks attempt to localize the

object.

We compare ACT and SACT to ResNet-50, ResNet-

101 and the baselines in fig. 7. We measure the average

per-image number of floating point operations (FLOPs)

required for evaluation of the validation set. We treat

multiply-add as two floating point operations. The FLOPs

are calculated just for the convolution operations (perfo-

rated convolution for SACT) since all other operations (non-

linearities, pooling and output averaging in ACT/SACT)

have minimal impact on this metric. The ACT models use

τ ∈ {0.0005, 0.001, 0.005, 0.01} and SACT models use

τ ∈ {0.001, 0.005, 0.01}. If we increase the image resolu-

tion at the test time, as suggested in [16], we observe that

SACT outperforms ACT and the baselines. Surprisingly, in

this setting SACT has higher accuracy than the ResNet-101

model while being computationally cheaper. Such accuracy

improvement does not happen for the baseline models or

ACT models. We attribute this to the improved scale tol-

erance provided by the SACT mechanism. The extended

results of fig. 7(a,b), including the average number of resid-

ual units per block, are presented in the supplementary.

We visualize the ponder cost for each block of SACT as

1795

Figure 9: ImageNet validation set. SACT (τ = 0.005) ponder cost maps. Top: low ponder cost (19.8-20.55), middle: average ponder cost

(23.4-23.6), bottom: high ponder cost (24.9-26.0). SACT typically focuses the computation on the region of interest.

heat maps (which we call ponder cost maps henceforth) in

fig. 8. More examples of the total SACT ponder cost maps

are shown in fig. 9.

4.2. Object detection (COCO dataset)

Motivated by the success of SACT in classification of

high-resolution images and ignoring uninformative back-

ground, we now turn to a harder problem of object detection.

Object detection is typically performed for high-resolution

images (such as 1000 × 600, compared to 224 × 224 for

ImageNet classification) to allow detection of small objects.

Computational redundancy becomes a big issue in this set-

ting since a large image area is often occupied by the back-

ground.

We use the Faster R-CNN object detection pipeline [34]

which consists of three stages. First, the image is processed

with a feature extractor. This is the most computationally

expensive part. Second, a Region Proposal Network predicts

a number of class-agnostic rectangular proposals (typically

300). Third, each proposal box’s features are cropped from

the feature map and passed through a box classifier which

predicts whether the proposal corresponds to an object, the

class of this object and refines the boundaries. We train the

model end-to-end using asynchronous SGD with momentum,

employing Tensorflow’s crop_and_resize operation,

which is similar to the Spatial Transformer Network [20],

to perform cropping of the region proposals. The training

hyperparameters are provided in the supplementary.

We use ResNet blocks 1-3 as a feature extractor and

block 4 as a box classifier, as suggested in [15]. We reuse the

models pretrained on the ImageNet classification task and

fine-tune them for COCO detection. For SACT, the ponder

cost penalty τ is only applied to the feature extractor (we

use the same value as for ImageNet classification). We use

COCO train for training and COCO val for evaluation (in-

stead of the combined train+val set which is sometimes used

Feature extractor FLOPs (%) mAP @ [.5, .95] (%)

ResNet-101 [15] 100 27.2

ResNet-50 (our impl.) 46.6 25.56

SACT τ = 0.005 56.0± 8.5 27.61

SACT τ = 0.001 72.4± 8.4 29.04

ResNet-101 (our impl.) 100 29.24

Table 1: COCO val set. Faster R-CNN with SACT results. FLOPs

are average (± one standard deviation) feature extractor floating

point operations relative to ResNet-101 (that does 1.42E+11 oper-

ations). SACT improves the FLOPs-mAP trade-off compared to

using ResNet without adaptive computation.

in the literature). We do not employ multiscale inference,

iterative box refinement or global context.

We find that SACT achieves superior speed-mAP trade-

off compared to the baseline of using non-adaptive ResNet

as a feature extractor (see table 1). SACT τ = 0.005 model

has slightly higher FLOPs count than ResNet-50 and 2.1
points better mAP. Note that this SACT model outperforms

the originally reported result for ResNet-101, 27.2 mAP [15].

Several examples are presented in fig. 10.

4.3. Visual saliency (cat2000 dataset)

We now show that SACT ponder cost maps correlate well

with human attention. To do that, we use a large dataset

of visual saliency: the cat2000 dataset [4]. The dataset is

obtained by showing 4,000 images of 20 scene categories to

24 human subjects and recording their eye fixation positions.

The ground-truth saliency map is a heat map of the eye

fixation positions. We do not train the SACT models on this

dataset and simply reuse the ImageNet- and COCO-trained

models. Cat2000 saliency maps exhibit a strong center bias.

Most images contain a blob of saliency in the center even

when there is no object of interest located there. Since our

1796

Figure 10: COCO testdev set. Detections and feature extractor ponder cost maps (τ = 0.005). SACT allocates much more computation to

the object-like regions of the image.

Model AUC-Judd (%)

Center baseline [4] 83.4

DeepFix [24] 87†

“Infinite humans” [4] 90†

ImageNet SACT τ = 0.005 84.6

COCO SACT τ = 0.005 84.7

Table 2: cat2000 validation set. † - results for the test set. SACT

ponder cost maps work as a visual saliency model even without

explicit supervision.

model is fully convolutional, we cannot learn such bias even

if we trained on the saliency data. Therefore, we combine

our ponder cost maps with a constant center-biased map.

We resize the 1920× 1080 cat2000 images to 320× 180
for ImageNet model and to 640 × 360 for COCO model

and pass them through the SACT model. Following [4],

we consider a linear combination of the Gaussian blurred

ponder cost map normalized to [0, 1] range and a “center

baseline,” a Gaussian centered at the middle of the image.

Full description of the combination scheme is provided in the

supplementary. The first half of the training set images for

every scene category is used for determining the optimal val-

ues of the Gaussian blur kernel size and the center baseline

multiplier, while the second half is used for validation.

Table 2 presents the AUC-Judd [5] metric, the area under

the ROC-curve for the saliency map as a predictor for eye fix-

ation positions. SACT outperforms the naı̈ve center baseline.

Compared to the state-of-the-art deep model DeepFix [24]

method, SACT does competitively. Examples are shown in

fig. 11.

5. Conclusion
We present a Residual Network based model with a

spatially varying computation time. This model is end-

Figure 11: cat2000 saliency dataset. Left to right: image, human

saliency, SACT ponder cost map (COCO model, τ = 0.005) with

postprocessing (see text) and softmax with temperature 1/5. Note

the center bias of the dataset. SACT model performs surprisingly

well on out-of-domain images such as art and fractals.

to-end trainable, deterministic and can be viewed as a

black-box feature extractor. We show its effectiveness in

image classification and object detection problems. The

amount of per-position computation in this model corre-

lates well with the human eye fixation positions, suggest-

ing that this model captures the important parts of the im-

age. We hope that this paper will lead to a wider adoption

of attention and adaptive computation time in large-scale

computer vision systems. The source code is available at

https://github.com/mfigurnov/sact.

Acknowledgments. D. Vetrov is supported by Russian Aca-

demic Excellence Project ‘5-100’. R. Salakhutdinov is supported in

part by ONR grants N00014-13-1-0721, N00014-14-1-0232, and

the ADeLAIDE grant FA8750-16C-0130-001.

1797

References
[1] A. Almahairi, N. Ballas, T. Cooijmans, Y. Zheng,

H. Larochelle, and A. Courville. Dynamic capacity networks.

ICML, 2016. 1, 5

[2] J. Ba, V. Mnih, and K. Kavukcuoglu. Multiple object recog-

nition with visual attention. ICLR, 2015. 1

[3] E. Bengio, P.-L. Bacon, J. Pineau, and D. Precup. Conditional

computation in neural networks for faster models. ICLR
Workshop, 2016. 5

[4] Z. Bylinskii, T. Judd, A. Borji, L. Itti, F. Durand, A. Oliva, and

A. Torralba. Mit saliency benchmark. http://saliency.mit.edu/.

6, 7, 8

[5] Z. Bylinskii, T. Judd, A. Oliva, A. Torralba, and F. Durand.

What do different evaluation metrics tell us about saliency

models? arXiv preprint arXiv:1604.03605, 2016. 8

[6] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.

Yuille. Deeplab: Semantic image segmentation with deep

convolutional nets, atrous convolution, and fully connected

crfs. arXiv preprint arXiv:1606.00915, 2016. 2

[7] J. Dai, Y. Li, K. He, and J. Sun. R-fcn: Object detection via

region-based fully convolutional networks. NIPS, 2016. 2

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

Imagenet: A large-scale hierarchical image database. CVPR,

2009. 2, 5

[9] A. Dosovitskiy, J. Tobias Springenberg, and T. Brox. Learning

to generate chairs with convolutional neural networks. CVPR,

2015. 1

[10] M. Figurnov, A. Ibraimova, D. Vetrov, and P. Kohli. Perfo-

ratedCNNs: Acceleration through elimination of redundant

convolutions. NIPS, 2016. 4, 5

[11] A. Fukui, D. H. Park, D. Yang, A. Rohrbach, T. Darrell, and

M. Rohrbach. Multimodal compact bilinear pooling for visual

question answering and visual grounding. arXiv preprint
arXiv:1606.01847, 2016. 1

[12] A. Graves. Adaptive computation time for recurrent neural

networks. arXiv preprint arXiv:1603.08983, 2016. 1, 3, 6

[13] K. Greff, R. Srivastava, and J. Schmidhuber. Highway and

residual networks learn unrolled iterative estimation. ICLR
2017. 1, 3

[14] S. Han, H. Mao, and W. J. Dally. Deep compression: Com-

pressing deep neural network with pruning, trained quantiza-

tion and huffman coding. ICLR, 2016. 5

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. CVPR, 2016. 1, 2, 5, 6, 7

[16] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in

deep residual networks. ECCV, 2016. 1, 2, 5, 6

[17] G. Huang, Z. Liu, and K. Q. Weinberger. Densely connected

convolutional networks. arXiv preprint arXiv:1608.06993,

2016. 4

[18] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Weinberger. Deep

networks with stochastic depth. ECCV, 2016. 3

[19] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

arXiv preprint arXiv:1502.03167, 2015. 2

[20] M. Jaderberg, K. Simonyan, A. Zisserman, and

K. Kavukcuoglu. Spatial transformer networks. NIPS, 2015.

1, 7

[21] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up con-

volutional neural networks with low rank expansions. BMVC,

2014. 5

[22] A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments

for generating image descriptions. CVPR, 2015. 1

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. NIPS,

2012. 1

[24] S. S. Kruthiventi, K. Ayush, and R. V. Babu. Deepfix: A

fully convolutional neural network for predicting human eye

fixations. arXiv preprint arXiv:1510.02927, 2015. 8

[25] H. Larochelle. My notes on adaptive computation time for

recurrent neural networks. Blog post https://goo.gl/QxBucH,

2016. 3

[26] H. Larochelle and G. E. Hinton. Learning to combine foveal

glimpses with a third-order boltzmann machine. NIPS, 2010.

1

[27] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua. A convolutional

neural network cascade for face detection. CVPR, 2015. 5

[28] Z. Li, E. Gavves, M. Jain, and C. G. Snoek. Videolstm

convolves, attends and flows for action recognition. arXiv
preprint arXiv:1607.01794, 2016. 1

[29] Q. Liao and T. Poggio. Bridging the gaps between residual

learning, recurrent neural networks and visual cortex. arXiv
preprint arXiv:1604.03640, 2016. 1

[30] M. Lin, Q. Chen, and S. Yan. Network in network. ICLR,

2014. 2

[31] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Common

objects in context. ECCV, 2014. 2, 5

[32] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. CVPR, 2015. 1

[33] V. Mnih, N. Heess, A. Graves, et al. Recurrent models of

visual attention. NIPS, 2014. 1

[34] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: To-

wards real-time object detection with region proposal net-

works. NIPS, 2015. 1, 2, 5, 7

[35] R. A. Rensink. The dynamic representation of scenes. Visual
cognition, 7(1-3), 2000. 1

[36] S. Sharma, R. Kiros, and R. Salakhutdinov. Action recogni-

tion using visual attention. ICLR Workshop, 2016. 1

[37] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van

Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneer-

shelvam, M. Lanctot, et al. Mastering the game of go with

deep neural networks and tree search. Nature, 529(7587),

2016. 1

[38] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. ICLR, 2015. 1, 2

[39] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,

D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper

with convolutions. CVPR, 2015. 1, 5

[40] S. Teerapittayanon, B. McDanel, and H. Kung. Branchynet:

Fast inference via early exiting from deep neural networks.

ICPR, 2016. 5

[41] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong, and

W.-c. Woo. Convolutional lstm network: A machine learning

approach for precipitation nowcasting. In NIPS, 2015. 1

1798

[42] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhut-

dinov, R. S. Zemel, and Y. Bengio. Show, attend and tell:

Neural image caption generation with visual attention. ICML,

2015. 1, 4

[43] F. Yang, W. Choi, and Y. Lin. Exploit all the layers: Fast and

accurate cnn object detector with scale dependent pooling and

cascaded rejection classifiers. CVPR, 2016. 5

[44] X. Zhang, J. Zhao, and Y. LeCun. Character-level convolu-

tional networks for text classification. NIPS, 2015. 1

1799

